Glutathione biosynthesis in the aging adult yellow-fever mosquito [Aedes aegypti (Louisville)].
نویسندگان
چکیده
Our previous findings [Hazelton & Lang (1978) Fed. Proc. Fed. Am. Soc. Exp. Biol. 37(6), 2378 (abstr.)] demonstrated a senescence-specific decrease in glutathione (GSH) concentration in the yellow-fever mosquito Aedes aegypti (Louisville)]. As a possible mechanism for this change, GSH biosynthesis was investigated in adult mosquitoes of different ages through the life-span. Biosynthesis was measured as the incorporation rate of [14C]glycine or [14C]cystine into glutathione. Essential information to validate the procedure was also obtained on the precursor-amino-acid pool sizes and kinetic parameters such as lag-time and time course of incorporation. Also, synthesis de novo rather than exchange was verified using buthionine sulphoximine, a specific inhibitor of GSH biosynthesis. The synthetic rates with either amino acid precursor varied throughout the adult life-span, but the patterns for both precursors were essentially identical. Biosynthesis was high in the newly emerged adult and decreased 62-70% (P less than 0.005) to a plateau during maturity. From the mature value there was a decrease of 36-41% (P less than 0.005) to a new plateau during senescence. Glutathione biosynthesis and concentration were correlated throughout maturity and senescence (r = 0.982) and thus biosynthesis was proportional to glutathione content. On this basis we concluded that impaired biosynthesis is the major and perhaps sole mechanism for the aging decrease in glutathione content.
منابع مشابه
Glutathione S-transferase activities in the yellow-fever mosquito [Aedes aegypti (Louisville)] during growth and aging.
Our previous findings [Hazelton & Lang (1978) Fed. Proc. Fed. Am. Soc. Exp. Biol. 37(6), 2378 (abstr.)] demonstrated aging-specific changes in glutathione concentrations in the yellow-fever mosquito [Aedes aegypti (Louisville)]. A possible mechanism could be increased utilization via glutathione S-transferase. Thus glutathione S-transferase activities were measured in mosquito samples from the ...
متن کاملPhylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia
Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...
متن کاملTransmission of African Horse-Sickness by Means of Mosquito Bites and Replication of the Virus in Aedes aegypti
متن کامل
Stimulation of JH biosynthesis by the corpora allata of adult female Aedes aegypti in vitro: effect of farnesoic acid and Aedes allatotropin.
Previous studies have demonstrated that the synthesis of juvenile hormone (JH) by the isolated corpora allata (CA) complex in vitro as well as the JH titer in the yellow fever mosquito Aedes aegypti are elevated before feeding and low after a blood meal. In the present study, we used an in vitro radiochemical assay to analyze the effect of farnesoic acid (FA) and Aedes allatotropin (Aedes-AT) o...
متن کاملYellow Fever Virus Infectivity for Bolivian Aedes aegypti Mosquitoes
The absence of urban yellow fever virus (YFV) in Bolivian cities has been attributed to the lack of competent urban mosquito vectors. Experiments with Aedes aegypti from Santa Cruz, Bolivia, demonstrated infection (100%), dissemination (20%), and transmission of a Bolivian YFV strain (CENETROP-322).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 210 2 شماره
صفحات -
تاریخ انتشار 1983